皮带机故障及维修方法分析
皮带机跑偏故障分析:引起皮带机跑偏有多种可能性 简单介绍几种:皮带对接安装尺寸精度不高;驱动滚筒或改向滚筒安装偏(但可调整,不会长期跑偏);滚筒与皮带之间有异物卷入;物料不在皮带正中(不经常出现) 跑偏故障多种多样,具体情况具体对待。处理方法:若是安装时皮带对接偏,一般扣连接皮带时皮带端头截斜了会出现钉扣时整个对接就会斜,不严重时用调心托辊,严重时需重新截端头重新钉扣。滚筒安装偏一般只是在刚安装时会出现,这种在平时不大出现,除了在张紧皮带时需重新调整。滚筒都有调整装置或是张紧装置,都可以调整跑偏皮带。按照相应装置具体调整。由于工作条件可能不好,例如矿井皮带机就会有煤渣或粉尘卷到皮带与滚筒之间,使得皮带在同一截面受力不均导致跑偏。定时清理皮带周围杂物和煤渣。
皮带机皮带断带或局部撕裂故障分析:**载运行或启动时局部物料压住;皮带老化严重;张紧力过大;跑偏导致皮带被卡住;物料的冲砸导致;处理方法:控制运输量或清理物料。皮带老化一般会表现出皮带不如以前硬(新皮带还是有点硬的),太软,表面磨损光滑(新皮带表面是不光滑的),皮带边磨损都是毛边。这是钉扣处容易撕裂。即使重新钉扣也会很快再次撕裂或断带。这时只有更换皮带。适当调整张紧力。勤观察皮带是否跑偏,若是,即使处理,否则严重时皮带会卷到滚筒与机架的缝隙中对皮带造成严重损坏。观察皮带上方是不是有其他横梁之类的东西和皮带距离很近,因为有时大物料很有可能就卡在皮带与上方横梁之间,有可能就导致皮带转不动。终导致打滑或皮带断裂,烧坏电子滚筒或电机。
一体式全封闭高强度侧围加强板冲压工艺研究
导读:本文主要介绍了某车型不拼焊一体式全封闭侧围加强板,阐述了其在工艺、成本、生产稳定性、余废料利用等方面的优越性,既提升了整车材料利用率,又推动了一体式全封闭高强板侧围加强板的应用。
全封闭侧围加强板具有提升白车身材料利用率,车身安全强度高,尺寸稳定性高,匹配关系简单,生产效率高,车身轻的优点。经过几个车型的应用,虽然全封闭侧围加强板优点众多,但是其拼焊成本高、生产稳定性差的问题一直是困扰行业的难题。本文介绍的一体式全封闭侧围加强板,就很好的克服了这两个问题,具有一定的推广应用价值。
侧围加强板
传统的侧围加强板是由几个简单的高强板组合拼接而成,这种方式的侧围加强板总成尺寸稳定性较低,降低了汽车白车身的尺寸合格率。
整体封闭结构的侧围加强板(图1),相对于多个小零件点焊合成的侧围加强板总成具有整车减重、总成强度高、尺寸相对稳定、板料成本低、大幅度降低生产设备总吨位、减少工装数量和制造成本、降低生产成本、减少生产准备的匹配时间等优势。
pagenumber_ebook=40,pagenumber_book=47
图1 整体式拼焊加强板
整体式拼焊加强板在冲压成形过程中,**问题有两个:⑴激光拼焊焊缝端头引起的开裂问题,导致尺寸稳定性较差、废品率高。⑵生产中焊缝区域模具镀层磨损严重问题。而采用不拼焊的一体式封闭侧围加强板很好的了这两个问题。
产品特性
某车型侧围加强板采用不拼焊的一体式全封闭侧围加强板,如图2所示。
pagenumber_ebook=41,pagenumber_book=48
图2 一体式全封闭加强板
如图3所示,零件板材尺寸大小为1.6mm×1475mm×1830mm,重量为37.97kg,材质为TRIP600。
pagenumber_ebook=41,pagenumber_book=48
图3 零件板材示意图
工艺分析
该产品工序内容如图4所示。
pagenumber_ebook=41,pagenumber_book=48
图4 工序流程图
通过使用计算机模拟技术,识别产品开裂、起皱、回弹状态,对制件进行模拟分析,分析图如图5所示。
pagenumber_ebook=42,pagenumber_book=49
图5 CAE模拟分析效果图
余废料利用
一体式全封闭加强板在落料过程中,门洞废料尺寸较大,二次利用价值高,如表1所示。
表1 废料参数
pagenumber_ebook=42,pagenumber_book=49
如图6所示,根据门洞废料的大小和形状,确定落料时门洞废料的收集方式,通过与相同的材料、以及类似材料的制件进行对比,将侧围加强板、侧围内板综合评价,确定了门洞废料的利用方案:门洞废料收集用于侧围内板T02。此方案得到产品试验认可,单车降成本56.8元。
pagenumber_ebook=42,pagenumber_book=49
图6 废料利用
板料性能测试机分析
前期通过模拟分析,一体式全封闭侧围加强板,需采购材质为TRIP600、厚度为1.6mm、卷宽为1570mm的卷料,属于**宽类钢板。经过与国内外钢材生产厂家技术沟通后,目前正在试验阶段,在此项目调试阶段可以满足需求,如表2所示。
表2 模拟数据表及拉伸试验报告
pagenumber_ebook=43,pagenumber_book=50
pagenumber_ebook=43,pagenumber_book=50
成本分析
在产品设计初期,关于侧围加强板产品设计,采用何种方式,我们也进行了充分论证,关键点是设计为整体式还是拼焊式,为此我们进行了详细的分析和论证,主要涉及下面三个方案:⑴不等厚激光拼焊全封闭结构。⑵等厚激光拼焊全封闭结构。⑶一体式全封闭结构。
三种方案在材料利用率、钢加成本、拼焊成本、开卷落料成本、制件调试难度、预计冲压废品、模具国产化难易程度、尺寸精度控制、投资成本等方面进行对比,如表3所示。
表3 侧围加强板不同拼焊方式对比估算表
pagenumber_ebook=44,pagenumber_book=51
通过综合对比,一体式全封闭侧围加强板投资成本低于其他方案。
实施效果
该侧围加强板量产以来,各项性能指标均达到或**出项目目标。
⑴板料成本:单车板料成本165元,较以往车型降低33%。
⑵生产效率:预计生产效率5次/分,实际单批次生产效率达到5.63次/分,较预期提升近12.6%。
⑶生产废品率:预计废品率控制在0.3%以下,实际废品率在0.054%。
⑷余废料利用:达成预计效果,单车降成本56.8元。
总结
整体高强度封闭结构拼焊板冲压生产,存在成形激光拼焊焊缝端头引起的开裂问题,导致尺寸稳定性较差、废品率高,这些问题在已经量产的车型中不同程度地制约了整体结构侧围加强板优势的展现。不拼焊的一体式全封闭侧围加强板可以完避免这个问题,同时生产成本大幅降低。
结束语
⑴本项目通过对某车型侧围加强板的工艺结构进行优化,消除以往车型生产稳定性差的问题,同时通过余废料利用,提升了整车材料利用率,保证了侧围加强板的工艺先进性,大大的推动了一体式全封闭加强板的应用,为**宽TR类高强钢的应用提供了数据支撑。
⑵从长远来看,提高白车身尺寸精度、提高高强板应用率是个永恒不变的话题,产品质量决定了产品的竞争力。
⑶从内部来看,能够快速提高工艺人员生准的水平,提高工艺人员对零件、材料的掌握能力,提高工艺人员对产品质量的控制能力;从横向来看,行业内均能够进行推广,提高企业整体实力。
耙斗机维修工操作规程
熟知耙斗机维修保养规定。一般规定维修电钳工应保证耙斗装岩机处于完好状态和安全可靠地工作。维修工必须遵守电钳工的一般规定,熟悉机器的各部结构和工作面的供电系统,掌握机械设备的完好标准、维修质量标准、油脂管理标准和安全技术保养规定。
下井前必须查阅耙斗机的运行情况记录,认真听取上一班人员的汇报,备足工作器具、常用材料、备品、备件及施工防护用品。工作前,必须检查作业点是否安全,瓦斯浓度是否符合规定,做到不安全不操作。维修工作前,必须切断电源,闭锁开关,并挂好“有人工作、不准送电”牌。
耙斗机对需要打开维修的减速器、滚筒、风动推车器等,要采取严密的防尘及遮盖措施,严防掉入煤、矸、杂物、淋水等。维修拆装必须按维修操作标准执行。维修工作中必须注意保护设备的防爆面不受损伤。拆装零部件时,应注意保管好小零件,严禁将其丢失和掉入机器内部。对需要维修或更换的齿轮、轴承、风管、阀等,必须选用同型号规格的元件。经维修的耙斗装岩机必须达到质量完好标准,由专人联系送电并交当班司机试运转,确认无问题后,方可交付使用。
楔横轧制导板粘料影响因素分析探究
在楔横轧机上下两个轧辊中间左右位置各设一块导板,用以控制轧件,防止轧件歪斜,保证轧制过程的稳定,并可有效地控制产品的尺寸精度,有利于精密楔横轧工艺的实现,见图1。但在楔横轧制过程中,由于冷导板和热轧件接触产生摩擦力,经常会使轧件的表面材料被刮下粘到导板工作面上,这部分材料有的会掉落,重新粘到工件上,在抛丸时自工件脱落,形成表面坑,见图2,而粘到导板上的材料不掉落时,会在工件表面形成划痕,见图3,这两种情况,轻者影响表面外观,重者造成产品报废。长期以来,导板粘料造成的产品表面坑或表面划痕的废品占全部废品的50%左右,该缺陷一直困扰着我们,为解决此问题,我们进行了大量试验,终使该缺陷得到有效控制。
pagenumber_ebook=35,pagenumber_book=51
图1 楔横轧工作原理图
1-轧辊 2-轧件 3-导板
影响导板粘料的因素
导板工作面粗糙度
导板工作表面越粗糙,与轧件的有效接触面积越小,二者相对运动时,对轧件的压强越大,在接触点的凸峰微切削作用下将轧件表面材料刮下,形成导板粘料,见图4。
pagenumber_ebook=36,pagenumber_book=52
图2 导板粘料坑
pagenumber_ebook=36,pagenumber_book=52
图3 导板粘料划痕
pagenumber_ebook=36,pagenumber_book=52
图4 导板工作面粘料图
导板工作面硬度
导板工作面越软,在轧制时,越容易磨损,使导板表面变粗糙,产生粘料现象。
导板工作面材料
由于导板工作表面直接与热轧件接触,并且承受着很大压力下的切向和轴向的滑动摩擦。因此,如果导板材料高温耐磨性较差时,就容易磨损,磨损后会造成工作面不光滑,轧制时,高温轧件材料会粘到导板上。同时,导板工作面的显微组织晶粒大小对耐磨性和粘料也有影响。
工件温度
工件温度越高,塑性越好,强度越低,越容易被导板刮料。同时,温度高,还容易在工件表面产生氧化皮,氧化皮组织比正常组织疏松,容易脱落,粘到导板上。
导板安装位置
导板上下、左右位置对轧制工艺的稳定,产品质量影响很大。
⑴导板上下位置。
导板上下位置与轧辊的转动方向有关,如图5(a)所示,当轧辊逆时针旋转时,轧件顺时针旋转,轧件容易被左导板工作面的下部和右导板工作面的上部刮伤。所以在轧辊的径向调整好后,应将左导板调整至尽量贴向下轧辊,将右导板调整至贴向上轧辊,如图5(b)导板实线部分。如图6(a)所示,当轧辊顺时针旋转时,轧件逆时针旋转,情况正好相反,左导板应贴向上轧辊,右导板应贴向下轧辊,如图6(b)。
⑵导板左右位置。
pagenumber_ebook=36,pagenumber_book=52
图5 轧辊逆时针旋转时导板上下位置确定图
1-上轧辊 2-下轧辊 3-左导板;4-右导板 5-轧件
pagenumber_ebook=36,pagenumber_book=52
图6 轧辊顺时针旋转时导板上下位置确定图
1-上轧辊 2-下轧辊 3-左导板 4-右导板 5-轧件
1)导板间的距离。两个导板工作面之间的距离Q应为轧件热态直径kd加上一定的间隙δ,见图7,若该间隙δ过大,则容易使轧件左右摆动,产品尺寸精度差,甚至导致中心疏松,若该间隙过小,则不容易落料,甚至被卡住,或者刮料。因此,该间隙既不能过大,也不能过小。
2)工作导板位置。导板的理想状态是轧制中心线(两导板工作面间的中心线)与轧辊中心连线重合,如图8(a),左右导板均不受力,但实际上轧件不是贴近左导板就是贴近右导板,或者来回交替贴左右导板,甚至出现轧件一端贴近一个导板,并不断地变化,贴近的导板就是工作导板,为确保轧制稳定,应尽可能使轧件始终贴近一个导板(即工作导板),这就要求轧制中心线(两导板工作面间的中心线)偏离轧辊中心连线一定距离△,见图8(b)。△越大,贴向右导板的力越大,但过大会加重导板磨损,形成粘料,因此应根据经验及公式合理选择△。
pagenumber_ebook=37,pagenumber_book=53
图7 导板左右位置确定图
pagenumber_ebook=37,pagenumber_book=53
图8 工作导板位置确定图
pagenumber_ebook=37,pagenumber_book=53
图9 导板工作面宽度
导板工作面宽度
如图9所示,导板工作面的宽度(即导板厚度)应确保不与轧辊产生干涉。过宽,轧制时会碰到轧辊;过窄,容易刮料,因此,导板工作面宽度一般按热态轧件小直径kd加一定间隙的经验公式确定。
试验过程
为解决导板粘料问题,在确保导板尺寸精度、导板安装位置准确以及轧件温度合理的前提下,我们做了如下试验。
⑴在导板工作面上镶嵌白钢条。白钢条是高速钢,硬度高、耐磨,正常情况下,可以减少导板粘料,但该材料非常脆,抗冲击能力差,一旦轧件卡住导板就会产生崩裂,安全风险也非常大。
⑵H13组合导板。H13是热作模具钢,具有抗热裂能力,在高温时具有较好的强度和硬度,耐磨性好。为降低导板制作成本,又能提高导板工作表面硬度和耐磨性,我们用45#钢和H13材料做组合导板,H13做导板的工作面,热处理后磨床磨削使用,热处理硬度要求50~55HRC,实际硬度50HRC,该导板并未像想象的那样耐磨,轧制不足一个班,就磨损出深坑,出现了粘料现象,轧制800多件,出现了50多件粘料坑工件。
⑶45#钢导板工作面喷涂热处理。喷涂工艺是近几年兴起的一种硬化零件表面的加工工艺,该工艺制作的导板工作面硬度高,表面粗糙度值小,耐磨,寿命长,使用效果不错,但因为喷涂热处理需要委外加工,加工时间长,成本高,一旦损坏,仍需委外处理,因此,这种导板也不太理想。
⑷滚轮导板。滚轮导板是在导板工作面上安装数个一定长度能滚动的圆柱轮,使轧件和导板之间的滑滚动摩擦变为纯滚动摩擦,降低摩擦力,减少导板工作面的磨损,从而可以减少粘料现象,但由于这种方式是在并不很厚的导板工作面上挖洞,做转轴,安装转轮,转轴很细,承载能力差,一旦卡钢,就会将滚轮轴卡断,应用效果并不十分好。
⑸D322焊条堆焊导板工作面后用手工磨削,见图10。随着工业技术的日益发展,堆焊的应用越来越广泛。已从单纯修复磨损零件工艺,发展成制造具有很高的耐磨、耐热、耐蚀等特殊性能要求的双金属零件的重要手段,堆焊后的导板工作面硬度高达52~62HRC,但该导板使用一两个班后就开始粘料,一直靠人工捅导板(也就是每轧一件,由人工将粘到导板上的材料用铁棒捅下来)的办法缓解导板粘料缺陷。这种靠人工捅导板的方法是不可靠的,一是捅导板的人员不是专职人员,既负责上料、又负责捅导板,在上料期间,导板没人捅,就会粘料;二是粘到导板上的材料有时很结实,很难全部捅下来,剩余部分,仍然会造成工件表面缺陷,因此这种方法是不可靠的。
pagenumber_ebook=38,pagenumber_book=54
图10 手工磨削的导板工作面
⑹D322焊条堆焊导板工作面后磨床磨削,见图11。这种方法与试验5类似,硬度相同,只是对堆焊后的导板工作面用磨床磨削,提高了表面光洁度,表面平滑如镜面,使用30多个班才开始轻微磨损,出现轻微粘料现象,工件表面坑很浅,并未造成产品报废,是一种较为理想的加工方法,不仅延长了导板使用寿命,减少导板粘料,降低废品率,还节约了捅导板的人工成本。
pagenumber_ebook=38,pagenumber_book=54
图11 机器磨削的导板工作面
试验分析
⑴试验1的白钢条硬而脆,只解决了耐磨问题,却未解决抗冲击能力。试验3的喷涂工艺,硬度高,耐磨,也具有抗冲击能力,但制作和维修成本均很高。
⑵试验4由滑滚动摩擦变纯滚动摩擦,摩擦力减小,磨损程度降低,粘料现象减轻,但存在抗冲击能力差,易断轴的缺点,而且制作成本也较高。
⑶试验2和试验6对比:加工工艺都是磨削,但材料不同,其硬度存在较大差异:H13热处理硬度仅达到要求的底限,规范要求硬度50~55HRC,实际硬度48HRC,硬度偏低;堆焊可提高耐磨性与耐蚀性,D322焊条含有Cr、Mo、W、V元素,这些元素使堆焊层具有较好的高温强度,并能在480~650℃时发生二次硬化效应,Cr使材料有很好的抗氧化性能,堆焊冷却速度很快,形成较多的马氏体,马氏体不仅硬度高(堆焊硬度高达52~62HRC),而且具有很高的屈服强度,使堆焊层经受中度的冲击;导板的磨损实际上是粘连磨损,即两个相对滑动的表面在载荷作用下使个别接触点发生焊合,焊合点在滑动时被撕裂,进而发生分离的过程,这种磨损受表面温度、硬度及光洁程度的影响,磨床磨削后的表面光滑,不易粘合。试验2和试验6相比,表面均为磨床磨削,除材料不同,存在晶粒大小差异外,其粗糙度相差无几,但二者耐磨程度相差很多,由此可见,导板粘料不仅与表面粗糙度有关,还与材料、表面加工工艺、表面硬度有关,从这两个试验可以推断,堆焊工艺比直接用模具钢热处理加工的导板表面耐磨。
⑷试验5和试验6对比:二者均为D322焊条堆焊的工作面,表面硬度均在52~62HRC之间,只是磨削方式不同,一个是手工磨削,一个是机器磨削,手工磨削的表面有磨痕,见图10,粗糙度大,易粘料,机器磨削的表面光滑平整无加工痕迹,见图11,耐磨性提高约30倍,粘料现象得到有效控制,由坑造成的废品率减少85%左右。因此,表面粗糙度是磨损和粘料关键因素。
总结
总之,影响导板磨损和粘料的因素,除导板尺寸、安装位置及工件温度外,重要的是导板工作面的材料、加工工艺、组织状况、硬度及粗糙度。归根结底取决于导板工作面的硬度及粗糙度,因此,导板工作面的材料除具有较高的硬度,较小的粗糙度值,还应保证有一定的抗冲击能力。本文试验和生产实践证明,用D322焊条堆焊后磨床磨削是导板工作面加工的工艺,其硬度控制在55~62HRC,粗糙度Ra不大于1.6μm。